Genetics

  • The crossing-over

    It was in 1960 that the first zebrafinch pale Brown back appeared in Belgium.
    Let us try to understand how such a combination of colours could have been born.

    It is known that the brown and pale back factors, related to sex, are located on X chromosomes, but different and at different locations (loci): (1) and (2).
    They are therefore not normally linked (otherwise all the browns would also be pale backs: which is not the case).
    How could they get linked on the same chromosome ? (3)

    Crossing over1 1

    When you mate a brown male with a pale gray back female (or vice versa), each time you get gray males, carriers of brown and pale backs. Each male therefore has two different X chromosomes: One carries the "brown" "no light back" genes, the other carries the "no brown" and "light back" genes. Being recessive, none of these genes can be expressed since they are in a single copy; being non-alleles, neither can dominate the other; It is therefore a natural gray color that is expressed.

    How will these genes be transmitted by the male to his offspring ? To understand it, some explanations are necessary.

    Chromosomes are very long molecules (2 millionths of a mm thick, average 5 cm long in humans) that are normally entangled with each other in the nucleus of the cell. At the time of meiosis (cell division allowing, in males, the formation of spermatozoa from the mother cells of the testes), these chromosomes split into two rigorously identical chromatids linked together by a centromere.
    Each chromatid then spirals. Only then does the chromosome become visible under the optical microscope. The chromosomes group together and join two to two homologous pairs.

    During this phase, two chromatids of the two joined chromosomes can cross, break and then join together by exchanging more or less important segments. This is the phenomenon called spanning.
    The “brown” gene could thus be found linked to the “pale back” gene on the same X chromosome. A gray male with brown back and pale back can (but only this way) produce pale gray, gray, brown back and pale brown back females. (12.5% of each).

    With this crossing over, this same male could also have:

    • Crossed with a pale back female: 12.5% of pale gray back males split brown.
    • Crossed with a brown female: 12.5% of brown males split pale backs.

    By mating one or the other of these with their "pale brown back" sister, it is possible to obtain (in 3rd generation): 25% pale brown back males and 25% pale brown back females.

    L enjambement image 2

    CHROMATIDE

    A : Normal
    B : Spirally contracted
    C : Schematized

    Continue reading

  • Zebrafinch genetics : Instructions

    1. Introduction

    The breeding and competition of zebrafinch has grown considerably over the past fifteen years. In order to improve the size of the new mutations, breeders also have recourse to conventional "split" birds.
    Some manage to combine several mutations. All this made it essential to know a minimum of applied genetics. It is this minimum that I would like to present to novice breeders.
    This is not a complete course in genetics, but a simple presentation of the method I use preceded by some basics.

    2. The zebrafinch and its mutations

    A zebrafinch has a number of visible characters (size, shape, designs, color, sex) that constitute its phenotype. It can have, in addition to other unexpressed traits (it is said to be a split). The set of traits, expressed or not, is called the genotype.

    A young zebrafinch grows out of an egg cell, the result of the fusion of the nucleus of a father's sperm and the nucleus of the female's egg. The bird's genetic program is already there: A series of cell divisions and coded information will (or not) trigger the appearance of the characters. The encoded information is carried by genes located on long filaments contained in the nucleus: chromosomes.
    All chromosomes go in pairs: each chromosome therefore has its counterpart.

    There are two categories of chromosomes :

    - Sex chromosomes :
    • XX in the male
    • XY in the female

    - Autosome chromosomes.

    The gray zebrafinch living in Australia is the source of all of our farmed zebra finches. It has a whole set of genes distributed in its chromosomes.Whenever a new mutation has appeared, there has been a change in an original gene (and it has been shown to be hereditary). The original gene and the mutated gene are located in the same place called a locus on each of the homologous chromosomes.
    Both genes are alleles.

    Genetics of zebrafinch 4

    A bird is pure (homozygous) when all of its alleles carry identical information.
    A bird is heterozygous when at least one pair of alleles carries different information about the same trait.

    We currently know about twenty different mutations of the gray zebrafinch.

    Continue reading

  • Genetic transmission of physical characteristics

    If you ask at a meeting of zebrafinch lovers a question about the genealogy of the masked, the pastel, or a black cheek, you are sure to receive the right answer.
    But if we ask the genealogy question about the format (size), the shape of the head or the length of the beak, the answers will be multiple and different.
    Some will say intermediaries, others dominant, etc.

    Nevertheless these characteristics follow Laws of Mendel. Many breeders do not believe this explanation, but it is true. It seems that the laws no longer behave in a strict way as for the mutations of colors. A wider variation in the format (size), shape of the head, etc... seems normal.

    Law of independent assortment

    In nature, zebrafinch have the same variation in size. And, in the process of domestication, this difference in variation has increased. Our cultivated zebrafinch are on average two centimeters wider than their ancestors in nature.
    In the articles, we always recommend a hard selection at the level of format and model taking into account the differences between the parts such as the head, the body, etc.

    But the format and the model are driven by genealogy. The body shapes are driven by factors.
    The question that arises is: Is there a relationship between the different factors that govern the format, the model, the shape of the head and the beak ?

    Continue reading